Atrophy Subtypes In Alzheimer's Disease Are Differentially Associated With Alzheimer's Disease Polygenic Risk Eleanor O'Brien^{1,*}, Chenyang Jiang^{2,*}, Vikram Venkatraghavan², Neil Oxtoby³, Pierrick Bourgeat⁴, Betty Tijms², Tenielle Porter¹, Simon Laws¹, Andre Altmann³ 01-324

1 Edith Cowan University, Joondalup, Australia, 2 Vrije Universiteit Amsterdam, Amsterdam UMC, Alzheimer Center Amsterdam, Netherlands, 3 UCL Hawkes Institute, UCL, UK, 4 CSIRO, Brisbane, ACT, Australia

Genes influence spatial atrophy patterns observed in Alzheimer's

DISEASE

BACKGROUND

- Alzheimer's disease (AD) is a heterogeneous disorder
- Previous work has identified atrophy subtypes in AD [1,2]
- it remains unclear whether there is a genetic predisposition to develop a specific atrophy subtype
- We investigated the genetic basis of atrophy subtypes using GWAS and AD polygenic risk scores (PRS)

ADDITIONAL INFORMATION

Database	Ν	SuStal	n	Snowpl	hlake
UKBB	32,399	11,201	. (9,290)	22,474	(18,698)
Amsterdam	3,248	2,195	(1,993)	2,707	(1,993)
ADNI	1,981	1,343	(1,140)	1,790	(1,543)
AIBL	996	478	(408)	792	(671)
Total	38,624	15,217	' (12,831)	27,763	(22,905)

A large fraction of participants did not show sufficient atrophy to be able to assign an atrophy subtype. Numbers in parentheses indicate participants contributing to genetic studies.

Subtypes:

Naming based on predominant atrophy pattern in early stages. Plots show increasing progress from left to right. SuStaln plots show mild atrophy in blue (Z-score 1) and moderate atrophy in red (Z-score 2).

Snowphlake plots depict more severe atrophy in darker red.

METHODS

- Study participants from four cohorts: ADNI, AIBL, Amsterdam, UK Biobank (UKBB)
- 2. T1w MRI processed with FreeSurfer v7.1.1. pipeline to extract cortical and sub-cortical volumes
- 3. pySuStaln [3] and Snowphlake [4] were trained on 1195 participants [4] and applied to \sim 39,000 participants in the four cohorts
- 4. Genotyping data imputed
- 5. 1-vs-all GWAS adjusted for age, sex and first 10 PCs

Table1: AD-PRS subtype associations.

	SuStaln				Snowphlake			
	Hippoca mpal sparing	Limbic predomi nant	Subcorti cal	Typical	Diffuse cortical	Frontal	Parieto- temporal	Subcorti cal
P=5e-8	-0.048	0.040	0.063	0.006	-0.024	0.016	0.002	0.020
	(0.021);	(0.015);	(0.022);	(0.008);	(0.008);	(0.009);	(0.02);	(0.009);
	P=0.021	P=0.009	P=0.003	P=0.468	P=0.003	P=0.08	P=0.936	P=0.022
P=1e-5	-0.044	0.043	0.057	0.003	-0.021	0.011	0.001	0.016
	(0.019);	(0.014);	(0.02);	(0.008);	(0.007);	(0.009);	(0.018);	(0.008);
	P=0.022	P=0.002	P=0.004	P=0.723	P=0.005	P=0.218	P=0.937	P=0.041
P=0.5	-0.004	0.003	0.000	0.000	-0.001	0.002	-0.001	0.001
	(0.019);	(0.002);	(0.002);	(0.001);	(0.001);	(0.001);	(0.002);	(0.001);
	P=0.103	P=0.052	P=0.909	P=0.763	P=0.354	P=0.111	P=0.591	P=0.222

Identified loci (P<5e-8)

CRIM1: involved in central nervous system (CNS) development

ARVCF: brain specific gene expression; linked to Velo-Cardio-Facial syndrome; formation of adherens junction complexes; Next to COMT locus

APOE: ε4 allele negatively associated with Hippocampalsparing subtype

SMARCAD1: linked to genetic skin disorders

CPVL: May be involved in the digestion of phagocytosed particles in the lysosome, participation in an inflammatory protease cascade

PEX2: Significant loci is intergenic upstream of the *PEX2* gene. Linked to infantile Refsum disease, a developmental brain disorder.

DAAM1: linked ITM2B-related cerebral amyloid angiopathy-2, also known as familial Danish dementia (FDD); Neuropathological hallmarks include extensive brain atrophy, chronic diffuse encephalopathy, and demyelinated cranial nerves

ZIC4: zinc finger gene; expression specific to cerebellum **MPPED1:** Metallophosphoesterase; brain specific expression

References:

- Young, A. L., et al. (2018). Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nature communications, 9(1), 4273.
- Ten Kate, M., et al. (2018). Atrophy subtypes in prodromal Alzheimer's disease are associated with cognitive decline. Brain, 141(12), 3443-3456. Aksman, L. M., et al. (2021). pySuStaln: a Python implementation of the Subtype and Stage Inference algorithm. SoftwareX, 16, 100811. Venkatraghavan, V., et al. (2024). A large-scale multi-centre study characterising atrophy heterogeneity in Alzheimer's disease. medRxiv, 2024-08. Kunkle, B. W., (2019). Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates A β , tau, immunity and lipid processing. *Nature genetics*, 51(3), 414-430.

- 6. PRS: SNP content was harmonized LD pruning in ADNI
- 7. IGAP2 results [5] and cutoffs 0.5, 1e-5 and 5e-8 used for AD-PRS

Effect sizes (and standard errors) and p-values for the association between subtypes (columns) and PRS at specific thresholds (rows). Bold font indicates FDR-adjusted p-value < 0.05.

Contact: <u>a.altmann@ucl.ac.uk</u> Twitter: @CombineLab

Hawkes Institute

